If it's not what You are looking for type in the equation solver your own equation and let us solve it.
160=40x^2+240x+200
We move all terms to the left:
160-(40x^2+240x+200)=0
We get rid of parentheses
-40x^2-240x-200+160=0
We add all the numbers together, and all the variables
-40x^2-240x-40=0
a = -40; b = -240; c = -40;
Δ = b2-4ac
Δ = -2402-4·(-40)·(-40)
Δ = 51200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{51200}=\sqrt{25600*2}=\sqrt{25600}*\sqrt{2}=160\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-240)-160\sqrt{2}}{2*-40}=\frac{240-160\sqrt{2}}{-80} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-240)+160\sqrt{2}}{2*-40}=\frac{240+160\sqrt{2}}{-80} $
| 4q-9=3 | | 39-y=163 | | 96/20=4r | | 9+27=15+x | | 459+r=1,115 | | 10-5(2x+12=-30 | | 30=y/3+20 | | -4z+-7=69 | | -9f=80-f | | m/8-5=39 | | -14.3=-1.7+3d | | (x+2)=x-1 | | 3(x-6)^2+5=25 | | -6+2y=28 | | 2.5p-10=3p+6. | | -6+2y=28` | | `-6+2y=28` | | 23=4m+27 | | -8+7y=8 | | y/4-9=-5 | | 5b-15=39 | | -0.75x+5=0.5x+25 | | 7.5x=4.5x | | 9x-2=10x+30 | | x=42=110 | | d/–4+18=22 | | 4-3/e=13 | | 4b-2.4=98-82 | | 70=10(s+2) | | 44=s9+37 | | 3x=150° | | -(2x+8)=28 |